X iv : m at h - ph / 0 01 20 19 v 2 1 F eb 2 00 1 Wavelet analysis as a p – adic harmonic analysis

نویسنده

  • S. V. Kozyrev
چکیده

New orthonormal basis of eigenfunctions for the Vladimirov operator of p–adic fractional derivation is constructed. The map of p–adic numbers onto real numbers (p–adic change of variable) is considered. p–Adic change of variable (for p = 2) provides an equivalence between the constructed basis of eigenfunctions of the Vladimirov operator and the wavelet basis in L 2 (R +) generated from the Haar wavelet. This means that the wavelet analysis can be considered as a p–adic harmonic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 2 . 10 79 v 1 [ m at h . C A ] 8 F eb 2 00 8 p - ADIC MULTIRESOLUTION ANALYSIS AND WAVELET FRAMES

We study p-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating MRAs (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions. We also suggest a method for the construction of wavelet functions and prove that any wavelet function generates a p-adic wavelet frame.

متن کامل

ar X iv : m at h - ph / 0 01 20 19 v 3 2 3 Fe b 20 01 Wavelet analysis as a p – adic spectral analysis

Wavelet analysis as a p–adic spectral analysis Abstract New orthonormal basis of eigenfunctions for the Vladimirov operator of p–adic fractional derivation is constructed. The map of p–adic numbers onto real numbers (p–adic change of variable) is considered. p–Adic change of variable maps the Haar measure on p–adic numbers onto the Lebesgue measure on the positive semiline. p–Adic change of var...

متن کامل

ar X iv : m at h - ph / 0 40 60 24 v 1 1 3 Ju n 20 04 p - Adic wavelet transform and quantum physics ∗

p-Adic wavelet transform is considered as a possible tool for the description of hierarchic quantum systems.

متن کامل

ar X iv : m at h - ph / 0 30 30 45 v 1 1 9 M ar 2 00 3 p – Adic pseudodifferential operators and p – adic wavelets

We introduce a new wide class of p–adic pseudodifferential operators. We show that the basis of p–adic wavelets is the basis of eigenvectors for the introduced operators.

متن کامل

ar X iv : 0 80 2 . 04 53 v 1 [ m at h - ph ] 4 F eb 2 00 8 1 Essential Spectrum of Multiparticle Brown – Ravenhall Operators in External Field

The essential spectrum of multiparticle Brown– Ravenhall operators is characterized in terms of two–cluster decompositions for a wide class of external fields and interparticle interactions and for the systems with prescribed symmetries. 2000 Mathematics Subject Classification: 81V55, 81Q10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008